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A TWO{GRID FINITE DIFFERENCE SCHEME FOR NONLINEAR PARABOLIC

EQUATIONS �

CLINT N. DAWSON y , MARY F. WHEELER y
AND CAROL S. WOODWARD z

Abstract. We present a two level �nite di�erence scheme for the approximation of nonlinear parabolic

equations. Discrete inner products and the lowest order Raviart-Thomas approximating space are used in

the expanded mixed method in order to develop the �nite di�erence scheme. Analysis of the scheme is given

assuming an implicit time discretization. In this two level scheme, the full nonlinear problem is solved on a

\coarse" grid of size H: The nonlinearities are expanded about the coarse grid solution and an appropriate

interpolation operator is used to provide values of the coarse grid solution on the �ne grid in terms of

superconvergent node points. The resulting linear but nonsymmetric system is solved on a \�ne" grid of

size h: Some a priori error estimates are derived which show that the discrete L1(L2) and L2(H1) errors

are O(h2 +H4�d=2 +�t), where d � 1 is the spatial dimension.

Keywords: error estmates, �nite di�erences, mixed �nite elements, nonlinear, superconvergent

AMS(MOS) subject classi�cation: 65M06, 65M12, 65M15, 65M55, 65M60, 35K55

1. Introduction. In this paper, we consider a �nite di�erence scheme for the solution of the nonlinear

parabolic di�erential equation

@p

@t
�r � (K(x; p)rp) = f(t;x) in (0; T ]� 
;(1)

p(0;x) = p0(x) in 
;(2)

�(K(p)rp) � � = g on (0; T ]� �;(3)

where 
 is a rectangular domain in IRd (d = 1, 2 or 3) with boundary �, � is the outward, unit, normal

vector on �, and K : 
� IR! IRd�d is a symmetric, positive de�nite second order diagonal tensor; that is,

K = diag(Kll), l = 1; : : : ; d.

Equation (1) arises in many applications. Our particular interest is to view (1) as a simpli�cation of

Richard's equation, a nonlinear parabolic equation arising in the modeling of ow through porous media.

To avoid time-step constraints, it is often preferable to solve (1) implicitly in time. However, for �ne

meshes, the resulting large systems of nonlinear equations can be costly to solve. In order to decrease the

amount of work necessary to solve (1), we consider a two level method where the nonlinear problem is solved

only on a coarse grid of diameter H and a linear problem is solved on a �ne grid of diameter h << H. On

the �ne grid, we approximate K(p) by a �rst order Taylor expansion about the solution from the coarse

grid. Thus, instead of solving a large nonlinear problem on the �ne grid, we solve a small nonlinear problem

on the coarse grid and a large linearized problem on the �ne grid.

This work is motivated by the work of Xu [11, 10] for Galerkin procedures applied to nonlinear elliptic

equations and the work of Dawson and Wheeler [4] for the expanded mixed �nite element method applied to

nonlinear parabolic equations. Xu was the �rst to analyze two level methods applied to nonlinear di�erential

equations. He showed optimal estimates in both H1 and L2 norms for both grids in the case of Galerkin

�nite element methods. Dawson and Wheeler showed optimal H1 and L2 estimates for the coarse and �ne

grids, and for the case of the lowest order Raviart-Thomas space, they showed superconvergence results for

the coarse grid in both norms. In this paper, we demonstrate superconvergence on the coarse grid for the

� This work was supported by the State of Texas, the United States Department of Energy and, in part,

performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory

under contract number W-7405-Eng-48.
y Texas Institute for Computational and Applied Mathematics, University of Texas, Austin, TX 78712
z Center for Applied Scienti�c Computing, Lawrence Livermore National Laboratory, Livermore, CA

94551
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lowest order Raviart-Thomas space with special quadrature rules, which give rise to a nonlinear cell-centered

�nite di�erence method on the coarse grid. Using these superconvergence estimates along with interpolation

operators and quadrature, we are able to show superconvergence of the pressure and ux in discrete L2

and H1 norms also for the �ne grid scheme. The �ne grid scheme is a linear �nite di�erence method. We

consider �nite di�erences in this paper since these schemes are of practical use in implementation.

Before analyzing the convergence of our two level method, we develop estimates of the expanded mixed

�nite element method with quadrature applied to a linear parabolic equation. Estimates for this method

have been shown for linear elliptic equations in [1]. The estimates we derive show superconvergence of uxes

and pressures in discrete norms. We also bound the error in the time derivative of the solution. For the

case of a diagonal, positive de�nite tensor, the scheme we analyze reduces to a cell-centered �nite di�erence

method, and our results are equivalent to those for the di�erence scheme [9]. This is the case we analyze

here in the context of expanded mixed methods. However, our method does not require the inverse of the

tensor K, and thus can be de�ned for the case of semi-de�nite K.

This paper is organized into �ve sections. We establish notation and some basic approximation results

in Section 2. The coarse grid scheme is presented in Section 3 along with optimal order error estimates. The

�ne grid scheme with error estimates is presented in Section 4. In Section 5 we give conclusions, remarks

and extensions of this work.

2. Notation and Approximation Results. In this section we de�ne some notation. Let 0 = t0 <

t1 < � � � < tN = T be a given sequence, �tn = tn�tn�1, �t = maxn�t
n, and for � = �(t; :), let �n = �(tn; :)

and

dt�
n
=

�n � �n�1

�tn
:

Let Lp(
) be the standard Banach space with norm,

kwkLp(
) =

�Z



jwjpd


�1=p
:

For simplicity, let (:; :) denote the L2(
) inner product, scalar and vector. Let W k
p (
) be the standard

Sobolev space

W k
p (
) = ff : kfkWk

p
(
) <1g;

where,

kfkWk
p
(
) =

0
@X
j�j�k

kD
�
fk

p

Lp(
)

1
A

1=p

:

Let Hs(
) for s a positive integer be the Sobolev space, W
s
2 (
). Denote the inner product for theHs Sobolev

space as,

(f; g)s =
X
j�j�s

Z



D�f �D�g d
;

where f; g 2 Hs(
). Finally, we denote by Cp;1(
) the space of functions whose p-th spatial derivative is

Lipschitz continuous.

For X (
) any of the above spaces and [a; b] � [0; T ], denote by jj � jjWk
1
(a;b;X) the norm of X -valued

functions f with the map t! jjf(�; t)jjX belonging to W k
1(a; b).
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Let V = H(
; div) = fv 2 (L2(
))d : r � v 2 L2(
)g and W = L2(
). We denote the subspaces of V

containing functions with normal traces weakly equal to 0 and gn as V 0 and V n, respectively.

We will consider two quasi-uniform triangulations of 
, a coarse triangulation with mesh size H denoted

by TH , and a re�nement of this triangulation with mesh size h denoted by Th. Both of these triangulations

will consist of rectangles in two dimensions or bricks in three dimensions. We consider the lowest order

Raviart-Thomas-Nedelec space on rectangles, [8, 6]. Thus, on an element E 2 Tk; k = h or H, we have

Vk(E) = f(�1x1 + �1; �2x2 + �2; �3x3 + �3)
T
: �i; �i 2 IRg;

Wk(E) = f� : � 2 IRg;

where the last component in Vk should be deleted in two dimensions. De�ne V 0
k = V 0\Vk and V

n
k = V n\Vk.

We use the standard nodal basis, where for Vk the nodes are at the midpoints of edges or faces of the

elements, and for Wk the nodes are at the centers of the elements. We denote the grid points of the �ne

grid by

(xi+1=2; yj+1=2); i = 0; : : : ; Nx; j = 0; : : : ; Ny;

and de�ne

xi =
1

2
(xi+1=2 + xi�1=2); i = 1; : : : ; Nx;

yj =
1

2
(yj+1=2 + yj�1=2); j = 1; : : : ; Ny;

hxi+1=2 = xi+1 � xi; i = 1; : : : ; Nx � 1;

hy
j+1=2

= yj+1 � yj ; j = 1; : : : ; Ny � 1;

hxi = xi+1=2 � xi�1=2; i = 1; : : : ; Nx;

hyj = yj+1=2 � yj�1=2; j = 1; : : : ; Ny;

h = max
i;j

(hxi ; h
y
j );

with corresponding notation for a third dimension. For the coarse grid, similar quantities are de�ned, but

the number of points in each direction are notated as N̂x and N̂y.

We de�ne discrete inner products corresponding to applications of the midpoint (M), trapezoidal (T)

and midpoint by trapezoidal (TM) quadrature rules by

(r; s)M =

NxX
i=1

NyX
j=1

hxi h
y
j rijsij ;

(v;q)TM =

NxX
i=0

NyX
j=1

hxi+1=2h
y
j v

x
i+1=2jq

x
i+1=2j +

NxX
i=1

NyX
j=0

hxi h
y

j+1=2
vy
ij+1=2

qy
ij+1=2

;

(v;q)T =

NxX
i=0

NyX
j=1

hxi+1=2h
y
j

1

2
(vxi+1=2j�1=2q

x
i+1=2j�1=2 + vxi+1=2j+1=2q

x
i+1=2j+1=2)

+

NxX
i=1

NyX
j=0

h
x
i h

y

j+1=2

1

2
(vy
i�1=2j+1=2q

y

i�1=2j+1=2 + vy
i+1=2j+1=2q

y

i+1=2j+1=2);

where we add a third sum in each for the case of three dimensions. We denote the associated norms by

k:kR; where R = M, T or TM and by ER(q; r), the error in approximating an integral by the given rule,

i.e. ET (q; r) = (q; r) � (q; r)T . The error in approximating an integral by either the trapezoidal or the

trapezoidal by midpoint rule is [3],

jEQ(q;v)j � C
X
E2Th

X
j�j=2

k
@�

@x�
(q � v)kL1(E)h

2:(4)
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For any � 2 L2(
) we let �̂k denote the L2 projection of � onto Wk, i.e.

(�;w) = (�̂k; w); 8w 2Wk:(5)

This L2 projection operator has the following approximation property for � 2 Hj(
),

k�̂k � �k � Ck�kjk
j ; 0 � j � 1;(6)

for k = h or H.

Associated with the RTN mixed �nite element spaces is the projection operator � : (H1(
))d ! Vk,

de�ned by,

(r � �q; w) = (r � q; w); 8w 2 Wk;(7)

with approximation properties,

kq��qk � Ckqk1k;(8)

kr � (q��q)k � Ckr � qk1k:(9)

Furthermore, by the de�nition of �q and the midpoint rule of integration, we have that the error in the �rst

component of the projection evaluated at the center of a gridblock side is given by,

j(�q)x � qxj(xi+1=2; yj) � Ch2kqxkW1

2
(
):(10)

Using this estimate, we can bound the L1 norm of the projection by,

k�q� qkL1(
) � ChkqkW1

2
(
):(11)

In the expanded mixed formulation of (1), we de�ne the variables ~u = �rp and u = K(p)~u. The

following analysis will use the estimate [5]

k�un � unkTM + k�~un � ~u
nkTM � Ck2jj~ujj2;(12)

where, again, we let k = h or H.

We will also make use of the following lemma proven in Arbogast, Wheeler and Yotov [1].

Lemma 2.1. For the lowest order RTN spaces on rectangles, for any q = (qx; qy) 2 H1(
) and E 2 Tk,

 @

@x
(�q)

x

L2(E)

�

@qx
@x


L2(E)

;(13)

 @

@y
(�q)

y


L2(E)

�

@q
y

@y


L2(E)

:(14)

In the following arguments, C will represent a generic constant independent of H;h and �t. We will

use the standard inequality,

ab �
�

2
a
2
+

1

2�
b
2
a; b; � 2 IR; � > 0:(15)

3. A Coarse Grid Nonlinear Finite Di�erence Scheme. In this section we develop and give

convergence estimates for a nonlinear cell-centered �nite di�erence scheme on the coarse grid. For simplicity

we consider two dimensions and note that extensions to three dimensions are straightforward.
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3.1. De�nition of the Scheme. The variational formulation of (1) at time tn uses the auxiliary

variables, ~un and un de�ned by,

~u
n
� �rp

n
;

u
n � K(pn)~un:

Thus, our problem is to �nd (pn; ~un;un) 2 (W � V � V n) satisfying

(pnt ; w) + (r � un; w) = (fn; w); 8w 2 W;(16)

(~u
n;v) = (pn;r � v); 8v 2 V 0;(17)

(u
n;v) = (K(pn)~un;v); 8v 2 V;(18)

We choose cell-centered �nite di�erence approximations Pn
H 2 WH ; ~U

n
H 2 VH and Un

H 2 V n
H to the

functions p(tn; :); ~u(tn; :) and u(tn; :), respectively, for each n = 1; : : : ; N , satisfying

(dtP
n
H ; w) + (r �Un

H ; w) = (fn; w); 8w 2 WH ;(19)

(~U
n
H ;v)TM = (Pn

H ;r � v); 8v 2 V 0
H ;(20)

(U
n
H ;v)TM = (K(PH(P

n
H))~U

n
H ;v)T; 8v 2 VH ;(21)

and we take P 0
H = p̂H(t

0; :): This scheme is based on an expansion of the standard mixed �nite element

method that was formulated for linear elliptic problems in [1].

We de�ne PH(p) from the values of pij for i = 1; : : : ; N̂x and j = 1; : : : ; N̂y as follows. For points (x; y)

such that xi � x � xi+1; i 2 f1; : : : ; N̂xg and yj � y � yj+1; j 2 f1; : : : ; N̂yg, we take PH(p)(x; y) to be the

bilinear interpolant,

PH(p)(x; y) = (pij(
xi+1 � x

xi+1 � xi
) + pi+1j(

x� xi

xi+1 � xi
))(

yj+1 � y

yj+1 � yj
)

+(pij+1(
xi+1 � x

xi+1 � xi
) + pi+1j+1(

x� xi

xi+1 � xi
))(

y � yj

yj+1 � yj
):

For i = 1; : : : ; N̂x � 1, we set

PH(p)(xi; y1=2) =
(2Hy

1 +Hy
2 )pi1 �Hy

1 pi2

Hy
1 +Hy

2

:

This is a two point extrapolation, and by Taylor's theorem we have j(PH(p) � p)(xi; y1=2)j = CH2. For

points (x; y) such that xi � x � xi+1 and y1=2 � y � y1, we de�ne PH(p) as the bilinear interpolant between

pi;1; pi+1;1;PH(p)(xi; y1=2) and PH(p)(xi+1; y1=2). By interpolation theory jPH(p) � pj = CH2 for these

points. In a similar way we can de�ne PH(p) for (x; y) such that xi � x � xi+1 and yN̂y
� y � yN̂y+1=2

as well as for points (x; y) where x1=2 � x � x1 or xN̂x
� x � xN̂x+1=2

and yj � y � yj+1 for j such that

1 � j � N̂y. Lastly, we de�ne PH(p) at the corners of the domain. Here, we use three point extrapolation,

PH(p)(x1=2; y1=2) = PH(p)1;1=2 + PH(p)1=2;1 � p1;1

= p1;1=2 + p1=2;1 � p1;1 +O(H
2
):

By Taylor's theorem, j(PH(p) � p)(x1=2; y1=2)j � CH2. For points (x; y) such that x1=2 � x � x1 and

y1=2 � y � y1, we de�ne PH(p)(x; y) as the bilinear interpolant of PH(p)(x1=2; y1=2); PH(p)(x1=2; y1);

PH(p)(x1; y1=2) and p1;1 which is an O(H2) approximation to p(x; y) within this \corner region". Similarly,

we can de�ne PH(p) as an O(H2) approximation to p in the other three \corner" regions.

We summarize the above in the following lemma.
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Lemma 3.1. If p is twice di�erentiable in space, then for PH(p) de�ned above,

kPH(p)� pk1 � CH
2
:

If a uniform mesh is used and K is a diagonal tensor, equations (19)-(21) reduce to a standard nonlinear

�nite di�erence procedure. Denoting Pn
H by Pn, we have in the interior of 
:

Z

ij

fndx+ Pn�1
ij

H2

�t
=

1

2
[(K11(PH(P

n
))i+1=2j+1=2 +K11(PH(P

n
))i+1=2j�1=2)(P

n
ij � Pn

i+1j)

+(K11(PH(P
n
))i�1=2j+1=2 +K11(PH(P

n
))i�1=2j�1=2)(P

n
ij � Pn

i�1j)

+(K22(PH(P
n
))i+1=2j+1=2 +K22(PH(P

n
))i�1=2j+1=2)(P

n
ij � Pn

ij+1)

+(K22(PH(P
n
))i+1=2j�1=2 +K22(PH(P

n
))i�1=2j�1=2)(P

n
ij � Pn

ij�1)]

+
H2

�t
Pn
ij :

Existence and uniqueness of a solution to this discrete nonlinear problem is given in the following

theorem.

Theorem 3.2. Assume fn 2 L2(
) for each n and K is continuously di�erentiable in its arguments.

Then, for �t su�ciently small, there exists a unique solution to equations (19)-(21).

Proof. We are seeking a unique solution to the nonlinear equation F (Pn) = 0, where F (Pn) = bn+Pn+
�t
H2A(P

n)Pn. Here, bn is a vector whose entry corresponding to grid cell (xi; yj) is �
�t
H2

R

ij

fnij�Pn�1
ij , P is

a vector whose ijth entry corresponds to the value of the scalar variable Pn
ij and A is a matrix function of Pn

given by the stencil above. By Theorem 5.4.5 of Ortega and Reinbolt [7], if F is continuously di�erentiable

and uniformly monotone on IRn, then a unique solution to F (Pn) = 0 exists. It is easily veri�ed that the

F de�ned above is continuously di�erentiable. In order to prove that F is uniformly monotonic we note

that uniform monotoncity is equivalent to positive de�niteness of the Jacobian, J = F 0, and that a real

matrix J is positive de�nite if and only if its symmetric part, (J +JT )=2, is positive de�nite [2, Lemma 3.1].

Furthermore, we know that if a matrix is stricly diagonal dominant with positive diagonal entries, then the

eigenvalues of the matrix have positive real parts [2, Theorem 4.9]. Now, J = I+ �t
H2A(P

n)+ �t
H2A

0(Pn)Pn.

Thus, with �t
H2 su�ciently small, we have that the symmetric part of J has positive real eigenvalues and,

hence, is positive de�nite, making J positive de�nite and F uniformly monotonic.

3.2. Preliminary Estimates. Before we show convergence estimates for this �nite di�erence scheme,

we show convergence for a related linear scheme. The arguments given below closely follow those of Arbogast,

Wheeler and Yotov [1] except that we extend their work to time di�erenced time dependent problems. In

order to derive these estimates we make the following smoothness assumptions:

(S1) f 2 W 1
1(0; T ;L2(
)),

(S2) Kll(x; p) 2 C
1(�
� IR)\W 2

1(
� IR), l = 1; : : : ; d, Kll and
@Kll

@p
are uniformly Lipschitz functions of p.

(S3) There exist positive constants K� and K� such that for z 2 IRd,

K�kzk
2
� z

t
K(x; p)z � K

�
kzk

2
; for x 2 
; p 2 IR:(22)

(S4) p 2 W 2
1(0; T ;C3;1(
)),

(S5) u; ~u 2 W 2
1(0; T ;C1(�
))d \W 2

1(0; T ;W 2
1(
))d.

Theorem 3.3. For each n = 1; : : : ; N , let (Pn
H ;

~U
n

H ;U
n
H) 2 (WH � VH � V n

H) satisfy

(r �Un
H ; w) = (bn; w); 8w 2WH ;(23)

(~U
n

H ;v)TM = (Pn
H ;r � v); 8v 2 V 0

H ;(24)

(U
n
H ;v)TM = (K(PH(p

n
))~U

n

H ;v)T; 8v 2 VH ;(25)
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with bn = fn � pnt and P 0
H = p̂0H . Then, under the assumptions (S1)-(S5),

kUn
H � u

n
kTM + k~U

n

H � ~u
n
kTM � CH

2
;(26)

kP
n
H � p

n
kM � CH

2
;(27)

kdtP
n
H � dtp

nkM � C(H2
+�t):(28)

In order to prove this theorem, we will �rst prove two preliminary lemmas.

Lemma 3.4. There exist ~U�;n 2 VH ; P
�;n 2WH ;Z

�;n 2 V n
H ; ~Z

�;n 2 VH and W �;n 2WH such that

(~U
�;n;v)TM = (P �;n;r � v); 8v 2 V 0

H ;(29)

(~Z
�;n;v)TM = (W �;n;r � v); 8v 2 V 0

H ;(30)

(Z
�;n;v)TM = (K(pn)~Z�;n;v)T + (K(pn)t ~U

�;n;v)T; 8v 2 VH ;(31)

and

jP �;n
i;j � pni;j j � CH2;(32)

jW �;n
i;j � pnt;i;j j � CH2;(33)

j ~U�;n

x;i+1=2j � ~unx;i+1=2j j+ j ~U�;n

y;ij+1=2 � ~uny;ij+1=2j � CH2;(34)

j ~Z�;n
x;i+1=2j � ~unt;x;i+1=2j j+ j ~Z�;n

y;ij+1=2 � ~unt;y;ij+1=2j � CH2;(35)

jZ�;n
x;i+1=2j � unt;x;i+1=2j j+ jZ�;n

y;ij+1=2 � unt;y;ij+1=2j � CH2:(36)

Here the subscript t denotes time di�erentiation, and the non-bold x and y subscripted variables denote

x and y vector components.

Proof. Arbogast, Wheeler and Yotov [1] present a lemma which gives the desired P �;n and ~U�;n above.

In order to derive (33) and (35), we apply a lemma due to Weiser and Wheeler [9] to the solution pair

(~unt ; p
n
t ) satisfying the elliptic problem

r � ~unt = Fn; in 
;

~u
n
t = �rpnt ; in 
;

pnt = Gn �
@p

@t

n

j@
; on @
;

where Fn = fnt + pntt. This result gives a W �;n satisfying (33) and through (30), ~Z�;n satis�es (35) in the

interior of 
. De�ne ~Z on � by,

~Z�;n
x;i+1=2j = ~unt;x;i+1=2j ;

~Z�;n
y;ij+1=2 = ~unt;y;ij+1=2:

Then, (35) clearly holds on �.

Choosing v in (31) to be the basis function associated with node (xi+1=2; yj), we have for i = 1; : : : ; N̂x�

1,

Z
�;n

x;i+1=2j
=

1

2
[K11(p

n
)i+1=2j+1=2 +K11(p

n
)i+1=2j�1=2]~Z

�;n

x;i+1=2j

+
1

2
[K11(p

n
)t;i+1=2j+1=2 +K11(p

n
)t;i+1=2j�1=2]~U

�;n
x;i+1=2j :
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Since unt = K(pn)~unt +K(pn)t~u
n, Taylor's theorem gives for i = 1; : : : ; N̂x � 1,

u
n
t;x;i+1=2j =

1

2
[K11(p

n
)i+1=2j+1=2 +K11(p

n
)i+1=2j�1=2]~u

n
t;x;i+1=2j

+
1

2
[K11(p

n
)t;i+1=2j+1=2 +K11(p

n
)t;i+1=2j�1=2]~u

n
x;i+1=2j +O(H

2
):

Therefore,

jZ�;n
x;i+1=2j

� u
n
t;x;i+1=2j j � Cj~Z�;n

x;i+1=2j
� ~u

n
t;x;i+1=2j j+O(H2

):

In a similar manner we can bound jZ�;n
y;ij+1=2

� unt;y;ij+1=2j, and (36) follows.

We can now extend a corollary from Arbogast, Wheeler and Yotov [1] to give: For the ~U�;n; P �;n;Z�;n; ~Z�;n

and W �;n in Lemma 3.4, there exists a constant C, independent of H, such that

k~U�;n � ~u
nkTM � CH2;

k~Z�;n � ~unt kTM � CH2;

kZ�;n � u
n
t kTM � CH2:

Lemma 3.5. There exists a constant C independent of H and �t such that

kr � (dtu
n � dtU

n
H)k � CH;(37)

kdt~u
n � dt ~U

n

HkTM + kdtu
n � dtU

n
HkTM � C(H2

+�t):(38)

Proof. To prove this lemma, we consider the time di�erence of (16)-(18),

(r � dtu
n; w) = (dtb

n; w); 8w 2 W;(39)

(dt~u
n;v) = (dtp

n;r � v); 8v 2 V 0;(40)

(dtu
n;v) = (dt(K(pn))~un;v) + (K(pn�1)dt~u

n;v); 8v 2 V;(41)

and the time di�erence of (23)-(25),

(r � dtU
n
H ; w) = (dtb

n; w); 8w 2 WH ;(42)

(dt ~U
n

H ;v)TM = (dtP
n
H ;r � v); 8v 2 V 0

H ;(43)

(dtU
n
H ;v)TM = (dt(K(PH(p

n
)))~U

n

H ;v)T + (K(PH(p
n�1

))dt ~U
n

H ;v)T; 8v 2 VH :(44)

We subtract (42) from (39), and we subtract (43) and (44) from (30) and (31) to give

(r � (dtu
n � dtU

n
H); w) = 0; 8w 2 WH ;(45)

(~Z
�;n � dt ~U

n

H ;v)TM = (W �;n � dtP
n
H ;r � v); 8v 2 V 0

H ;(46)

(Z
�;n � dtU

n
H ;v)TM = (K(pn)~Z�;n �K(PH(p

n�1
))dt ~U

n

H ;v)T

+(K(pn)t ~U
�;n

� dt(K(PH(p
n
)))~U

n

H ;v)T; 8v 2 VH :(47)

Using (45) and applying the Cauchy-Schwarz inequality we have,

kr � (dtu
n � dtU

n
H)k

2 = (r � (dtu
n � dtU

n
H);r � (dtu

n ��dtu
n))

� kr � (dtu
n � dtU

n
H)kkr � (dtu

n ��dtu
n
)k:

Thus, by (9) the �rst part of the lemma is obtained.
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Now, let v = �dtu
n � dtU

n
H in (46) and v = ~Z�;n � dt ~U

n

H in (47), use (45) and combine to get

(K(p
n
)~Z

�;n
�K(PH(p

n�1
))dt ~U

n

H ;
~Z
�;n

� dt ~U
n

H)T

=� (~Z
�;n

� dt ~U
n

H ;�dtu
n
� dtU

n
H)TM + (Z

�;n
� dtU

n
H ;
~Z
�;n

� dt ~U
n

H)TM

� (@tK(pn)~U�;n � dtK(PH(p
n
))~U

n

H ;
~Z
�;n � dt ~U

n

H)T:(48)

Adding (K(PH(p
n�1))~Z�;n; ~Z�;n � dt ~U

n

H)T to both sides of (48), using the boundedness assumption on K,

Taylor's Theorem, the Cauchy-Schwarz inequality and (15) we have

k~Z�;n � dt ~U
n

HkTM � C(k�dtu
n � Z

�;nkTM +�tk~U�;nkTM

+kdt(K(pn)�K(PH(p
n
)))~U

�;nkT

+kdtK(PH(p
n
))(~U

�;n � ~U
n

H)kT + C(H2
+�t)k~Z�;nkT):

Taylor's theorem, the estimate (12) and Lemma 3.4 imply that k�dtu
n � Z�;nkTM � C(H2 + �t). By

Lemma 3.4 k~U�;nkTM and k~Z�;nkT are bounded. Thus, by Taylor's theorem, the smoothness assumptions,

and approximation properties of PH ,

k~Z�;n � dt ~U
n

HkTM � C(H2
+�t+ k~U�;n � ~U

n

HkT):(49)

By results from Arbogast, Wheeler and Yotov [1], k~U�;n� ~U
n

HkT � CH2. Hence, by the triangle inequality

and Lemma 3.4,

kdt~u
n � dt ~U

n

HkTM � C(H2
+�t):

Now, let v = Z�;n � dtU
n
H in (47) and use the Cauchy-Schwarz inequality to get

kZ�;n � dtU
n
HkTM � kK(pn)~Z�;n �K(PH(p

n�1
))dt ~U

n

HkT

+kK(pn)t ~U
�;n � dt(K(PH(p

n
)))~U

n

HkT:

By Lipschitz continuity of K and Kp, Taylor's theorem, the approximation properties of PH and the bound-

edness of pt,

kZ�;n � dtU
n
HkTM � k(K(pn)�K(PH(p

n�1
)))~Z

�;nkT + kK(PH(p
n�1

))(~Z
�;n � dt ~U

n

H)kT

+k(K(pn)t � dtK(PH(p
n
)))~U

�;nkT + kdtK(PH(p
n
))(~U

�;n � ~U
n

H)kT

� C(H2
+�t):

The triangle inequality and Lemma 3.4 result in,

kdtu
n � dtU

n
HkTM � C(H2

+�t):

Remark 3.1. By the inverse assumption, equivalence of norms on VH , and (12) we have

k~U
n

Hk1 � k~U
n

H ��~u
nk1 + k�~un � ~u

nk1 + k~unk1

� CH�d=2k~U
n

H ��~u
nkTM + k�~un � ~u

nk1 + k~unk1

� C(H�d=2H2
+H + 1);

Thus, k~U
n

Hk1 is bounded.

Proof. (Of Theorem 3.3) Results (26) and (27) have been proven by Arbogast, Wheeler and Yotov [1].
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In order to derive (28), we subtract (43)-(44) from (40)-(41) and use the de�nition of the L2 projection

to give

(dt~u
n � dt ~U

n

H ;v) +ETM(dt ~U
n

H ;v) = (dtp̂
n
H � dtP

n
H ;r � v); v 2 V 0

H ;(50)

(dtu
n � dtU

n
H ;v) +ETM(dtU

n
H ;v) = (dt(K(pn))~un � dt(K(PH(p

n
)))~U

n

H ;v)

+(K(pn�1)dt~u
n �K(PH(p

n�1
))dt ~U

n

H ;v)

+ET(dt(K(PH(p
n
)))~U

n

H ;v)

+ET(K(PH(p
n�1

))dt ~U
n

H ;v); v 2 VH ;(51)

Let � satisfy the auxilliary problem with �n 2 L2(
)

�r �K(PH(p
n�1

))r�n = �n; 
;(52)

�K(PH(p
n�1

))r�n � � = 0; �:(53)

Elliptic regularity implies that

k�nk2 � Ck�nk:(54)

By equations (52) and (50) and the de�nition of �,

(dtp̂
n
H � dtP

n
H ; �

n
)

= �(dtp̂
n
H � dtP

n
H ;r � �K(PH(p

n�1))r�n)

= �(dt~u
n � dt ~U

n

H ;�K(PH(p
n�1

))r�n)

�ETM(dt ~U
n

H ;�K(PH(p
n�1

))r�n)

= �(dt~u
n � dt ~U

n

H ;�K(PH(p
n�1

))r�n �K(PH(p
n�1

))r�n)

�(K(PH(p
n�1

))(dt~u
n � dt ~U

n

H);r�
n ��r�n)

�(K(PH(p
n�1

))(dt~u
n � dt ~U

n

H);�r�
n
)

�ETM(dt ~U
n

H ;�K(PH(p
n�1

))r�n):(55)

By (51)

�(K(PH(p
n�1))(dt~u

n � dt ~U
n

H);�r�
n) = ((K(pn�1)�K(PH(p

n�1)))dt~u
n;�r�n)

�(dtu
n � dtU

n
H ;�r�

n
)

+(dt(K(p
n
))~u

n
� dt(K(PH(p

n
)))~U

n

H ;�r�
n
)

�ETM(dtU
n
H ;�r�

n
)

+ET(dt(K(PH(p
n
)))~U

n

H ;�r�
n
)

+ET(K(PH(p
n�1))dt ~U

n

H ;�r�
n):(56)

We also have by integration by parts, (45) and (47)

�(dtu
n
� dtU

n
H ;�r�

n
)

= �(dtu
n � dtU

n
H ;�r�

n �r�n)� (dtu
n � dtU

n
H ;r�

n
)

= �(dtu
n
� dtU

n
H ;�r�

n �r�n) + (r � (dtu
n � dtU

n
H); �

n � �̂nH):(57)

Furthermore, we can write

(dtK(pn)~un � dtK(PH(p
n
))~U

n

H ;�r�
n
) = ((dtK(pn)� dtK(PH(p

n
)))~u

n;�r�n)

+(dtK(PH(p
n
))(~u

n � ~U
n

H);�r�
n
):(58)
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Using (4) gives

jETM(dt ~U
n

H ;�K(p
n
)r�

n
)j � C

X
E

X
j�j=2

 @�

@x�
(dt ~U

n

H � �K(p
n
)r�

n
)


L1(E)

H
2

� C
X
E

(


@dt ~U

n

H;x

@x


L2(E)

 @

@x
(�K(pn)r�n)x


L2(E)

+


@dt ~U

n

H;y

@y


L2(E)

 @

@y
(�K(pn)r�n)y


L2(E)

)H2:(59)

By Lemma 2.1 and the inverse inequality we have


@dt ~U

n

H;x

@x


L2(E)

�

 @

@x
(dt ~U

n

H;x ��dt~u
n
x)


L2(E)

+

 @

@x
�dt~u

n
x


L2(E)

� Ckdt ~U
n

H;x ��dt~u
n
xkL2(E)H

�1 +

 @

@x
dt~u

n
x


L2(E)

� Ckdt ~U
n

H ��dt~u
nkL2(E)H

�1
+ kdt~u

nk1;E :(60)

Since dt ~U
n

H and �K(pn)r�n are in VH , by (59) and the Cauchy-Schwarz inequality,

jETM(dt ~U
n

H ;�K(pn)r�n)j � C
X
E

(kdt ~U
n

H ��dt~u
nkL2(E) + kdt~u

nk1;EH)k�nk2;EH

� C(kdt ~U
n

H ��dt~u
nk0 + kdt~u

nk1H)k�nk2H:(61)

As done above and noting that K has bounded second derivatives,

jETM(dtU
n
H ;�r�

n)j � C(kdtU
n
H ��dtu

nk0 + kdtu
nk1H)k�nk2H;(62)

jET(dt(K(PH(p
n
)))~U

n

H ;�r�
n
)j � (C +�t)(k~U

n

H ��~u
nk0 + k~unk1H)k�nk2H;(63)

jET(K(PH(p
n�1

))dt ~U
n

H ;�r�
n
)j � C(kdt ~U

n

H ��dt~u
nk0 + kdt~u

nk1H)k�nk2H;(64)

where C in the second and third inequalities depends on K�.

Combining (55) with (56)-(64), applying approximation properties of the L2 and � projections, using

Lemma 3.5, and equations (26) and (12) gives

(dtp̂
n
H � dtP

n
H ; �

n
)

� kdt~u
n � dt ~U

n

Hkk�K(pn)r�n �K(pn)r�nk

+kK(PH(p
n�1

))(dt~u
n � dt ~U

n

H)kkr�
n ��r�nk

+k(dtK(pn)� dtK(PH(p
n)))~unkk�r�nk

+kdtK(PH(p
n
))(~u

n � ~U
n
)kk�r�nk

+k(K(pn�1)�K(PH(p
n�1

)))dt~u
nkk�r�nk

+kdtu
n � dtU

n
Hkk�r�

n �r�nk

+kr � (dtu
n � dtU

n
H)kk�

n � �̂nHk

+kdt(K(pn))~un � dt(K(PH(p
n
)))~U

n

Hkk�r�
nk

+jETM(dt ~U
n

H ;�K(pn)r�n)j+ jETM(dtU
n
H ;�r�

n
)j

+jET(dt(K(PH(p
n
)))~U

n

H ;�r�
n
)j+ jET(K(PH(p

n�1
))dt ~U

n

H ;�r�
n
)j

� C(H2
+�t)k�nk2:
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Applying equation (54) and taking �n = dtp̂
n � dtP

n
H we have

kdtp̂
n
H � dtP

n
Hk � C(H

2
+�t):(65)

3.3. Convergence Estimate of the Nonlinear Scheme. We now prove the following theorem

about the convergence of the above �nite di�erence scheme:

Theorem 3.6. Let Pn
H ; ~U

n
H and Un

H ; n = 1; : : : ; N be de�ned as in (19) - (21) with initial values

P 0
H = p̂H(t

0; :). Assume (S1)-(S4) hold. Then, there exists a positive constant C, independent of H and �t

such that

kPN
H � pNkM + f�t

NX
n=1

K�k~U
n
H � ~u

nk2Tg
1=2 � C(H2

+�t):(66)

Proof. Let n = Pn
H � Pn

H ;�
n = ~Un

H � ~U
n

H ; �
n = Un

H � Un
H and �n = Pn

H � pn. Subtracting

(dtP
n
H ; w) + (r �Un

H ; w) from both sides of (19) and using equations (23) and (16) we have

(dt
n; w) + (r � �n; w) = (fn; w)� (r �Un

H ; w)� (dtP
n
H ; w)

= (pnt ; w)� (dtp
n; w)� (dt�

n; w)

= (�n; w)� (dt�
n; w); w 2 WH ;(67)

where � is a time truncation term. Subtracting (24) from (20) results in

(�
n;v)TM = (n;r � v); v 2 V 0

H ;(68)

and subtracting (25) from (21) gives

(�
n;v)TM = (K(PH(P

n
))~U

n
H ;v)T � (K(PH(p

n
))~U

n

H ;v)T

= (K(PH(P
n
H))�

n;v)T + ((K(PH(P
n
H))�K(PH(P

n
H)))

~U
n

H ;v)T

�((K(PH(p
n))�K(PH(P

n
H)))

~U
n

H ;v)T; v 2 VH :(69)

Letting w = n in (67), v = �n in (68) and v = �n in (69) gives

(dt
n; n) = �(r � �n; n) + (�n; n)M � (dt�

n; n);(70)

(�
n; �n)TM = (n;r � �n);(71)

(�
n;�n)TM = (K(PH(P

n
H))�

n;�n)T + ((K(PH(P
n
H))�K(PH(P

n
H)))

~U
n

H ;�
n
)T

�((K(PH(p
n
))�K(PH(P

n
H)))

~U
n

H ;�
n
)T:(72)

Combining equations (70)-(72), applying the Cauchy-Schwarz inequality and (15) we have

1

2�t
[knk2M � kn�1k2M] + kK(PH(P

n
H))

1=2
�
nk2T

� (dt
n
; 

n
)M + kK(PH(P

n
H))

1=2
�
n
k
2
T

� (�n; n)M � (dt�
n; n)M + ((K(PH(p

n
))�K(PH(P

n
H)))

~U
n

H ;�
n
)T

�((K(PH(P
n
H))�K(PH(P

n
H)))

~U
n

H ;�
n
)T

�
1

2
k�nk2M + knk2M +

1

2
kdt�

nk2M + Ck(K(PH(p
n
))�K(PH(P

n
H)))

~U
n

Hk
2
T

+Ck(K(PH(P
n
H))�K(PH(P

n
H)))

~U
n

Hk
2
T + �k�nk2TM;
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where � � K�=2.

Now,

j�
n
ij j =

1

�t
j

Z tn

tn�1

ptt(xi; yj ; t)(t� t
n
)dtj � kptt(xi; yj ; :)kL2(tn�1;tn)(�t)

1

2 :

So,

k�nk2M � �t
X
ij

Hx
i H

y
j kptt(xi; yj ; :)k

2
L2(tn�1;tn):(73)

By the triangle inequality and Theorem 3.3,

kdt�
nk2M � C(H4

+�t2):

By (S2), the de�nition of PH and Theorem 3.3

k(K(PH(p
n
))�K(PH(P

n
H)))

~U
n

Hk
2
T � Ckpn � Pn

Hk
2
M � CH4;(74)

k(K(PH(P
n
H))�K(PH(P

n
H)))

~U
n

Hk
2
T � Cknk2M;(75)

where we have used the boundedness of k~U
n

Hk1 as per Remark 3.1.

Multiplying by 2�t, bringing the �k�nk2TM term to the left-hand side, summing on n; n = 1; : : : ; N ,

using (73)-(75) and applying Gronwall's Lemma gives,

kNk2M � k0k2M +�t

NX
n=1

kK(PH(P
n
H))

1=2
�
nk2T

� C�t

NX
n=1

(k�nk2M + kdt�
nk2M + k�nk2M) + CH4

+ C�t

NX
n=1

knk2M

� C(�t2 +H4
):

The proof is completed by applying the initial conditions on P 0
H and P 0

H , Theorem 3.3 and the triangle

inequality.

4. Fine Grid Linear Scheme. We now consider a linear cell-centered �nite di�erence scheme on the

�ne grid where we make use of the nonlinear solution on the coarse grid.

We solve the following problem for Pn
h 2Wh; ~U

n
h 2 Vh and Un

h 2 V n
H at each n = 1; : : : ; N ,

(dtP
n
h ; w) = �(r �U

n
h; w) + (f

n
; w); w 2 Wh;(76)

(~Un
h ;v)TM = (Pn

h ;r � v);v 2 V 0
h ;(77)

(U
n
h ;v)TM = (K(PH(P

n
H))~U

n
h;v)T

+(Kp(PH(P
n
H))QH(~U

n
H)(Ph(P

n
h )�PH(P

n
H));v)T;v 2 Vh:(78)

We de�ne QH(~u) as a vector quantity with entries Qx
H(~u

x) and Qy
H(~u

y). The entry Qx
H(~u

x) is de�ned

from the values of ~uxi+1=2j for i = 0; : : : ; N̂x and j = 1; : : : ; N̂y as follows. For points (x; y) such that

xi�1=2 � x � xi+1=2; i 2 f1; : : : ; N̂xg and yj � y � yj+1; j 2 f1; : : : ; N̂yg, we take Q
x
H(~u

x) to be the bilinear

interpolant of ~uxi�1=2;j ; ~u
x
i+1=2;j ; ~u

x
i�1=2;j+1 and ~uxi+1=2;j+1. This leaves a strip half a cell in height along the

top and bottom of the domain. We will consider the bottom strip. For i = 0; : : : ; N̂x, we set

Qx
H(~u

x
)(xi+1=2; y1=2) =

(2Hy
1 +Hy

2 )~u
x
i+1=2;1 �Hy

1 ~u
x
i+1=2;2

Hy
1 +Hy

2

:
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Now, for points (x; y) such that xi�1=2 � x � xi+1=2; i 2 f1; : : : ; N̂xg and y1=2 � y � y1, we let Q
x
H(~u

x)(x; y)

be the bilinear interpolant of Qx
H(~u

x)(xi�1=2; y1=2); Q
x
H(~u

x)(xi+1=2; y1=2); ~u
x
i�1=2;1 and ~uxi+1=2;1. An analo-

gous de�ntion is made along the top strip of the domain. The de�nition of Q
y
H(~u

y) is similar to the above,

except that the strips are along the left and right sides of the domain.

We have the following lemma for the approximation error of QH ,

Lemma 4.1. If each component of ~u is twice di�erentiable, then for QH(~u) de�ned above,

kQH(~u)� ~uk1 � CH2:

Proof. By Taylor's theorem we have that the two point extrapolation for the boundary points described

above is O(H2) accurate. Thus, since bilinear interpolation is also O(H2) accurate, the lemma is proven.

We now prove the following theorem about the convergence of the above linear �nite di�erence scheme,

Theorem 4.2. Let Pn
h ; ~U

n
h and Un

h ; n = 1; : : : ; N be de�ned as in (76) - (78) with initial values

P 0
h = p̂h(t

0; :). Assume (S1)-(S4) hold and that H and �tH�d=2 are su�ciently small. Then, there exists a

positive constant C, independent of h, H and �t such that

kPN
h � pNkM + f�t

NX
n=1

K�k~U
n
h � ~u

nk2Tg
1=2 � C(H4�d=2

+ h2 +�t):(79)

Proof. By Section 3 we can de�ne Pn
h 2 Wh; ~U

n

h 2 Vh and Un
h 2 V n

h at each n = 1; : : : ; N satisfying

equations (23)-(25) and Theorem 3.3 on the �ne grid.

Let n = Pn
h � Pn

h;�
n = ~Un

h � ~U
n

h ; �
n = Un

h �Un
h and �n = Pn

h � pn. As done in Theorem 3.6, we

subtract (dtP
n
h ; w) + (r �Un

h ; w) from both sides of equation (76) and combine with equation (23) applied

to the �ne grid. We also subtract (24) and (25) from (77) and (78) to give the error equations,

(dt
n; w) = �(r � �n; w) + (�n; w)� (dt�

n; w);(80)

(�n;v)TM = (n;r � v);(81)

(�
n;v)TM = (K(PH(P

n
H))~U

n
h;v)T � (K(Ph(p

n
))~U

n

h;v)T

+(Kp(PH(P
n
H))QH(~U

n
H)(Ph(P

n
h )�PH(P

n
H));v)T:(82)

Using Taylor's Theorem, K(Ph(p
n)) can be written as

K(Ph(p
n
)) = K(Ph(P

n
H)) +Kp(PH(P

n
H))(Ph(p

n
)�PH(P

n
H))

+
Kpp(�

n)

2
(Ph(p

n
)�PH(P

n
H))

2;

where �n is between Ph(p
n) and PH(P

n
H).

Using this expression in (82), adding and subtracting (Kp(PH(P
n
H))QH(~U

n
H)Ph(p

n);v)T we have

(�
n;v)TM = (K(PH(P

n
H))�

n;v)T

+(Kp(PH(P
n
H))(QH(~U

n
H)� ~U

n

h)(Ph(p
n)�PH(P

n
H));v)T

+(Kp(PH(P
n
H))QH(~U

n
H)(Ph(P

n
h )�Ph(p

n
));v)T

+(
Kpp(�

n)

2
(Ph(p

n
)�PH(P

n
H))

2 ~U
n

h;v)T:

Let w = n;v = �n and v = �n in (80), (81) and (83), respectively, and combine to give

1

2�t
[knk2 � kn�1k2] +K�k�

nk2T
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� (dt
n
; 

n
) + kK(PH(P

n
H))

1=2
�
n
k
2
T

�
1

2
k�
n
k
2
+ k

n
k
2
+

1

2
kdt�

n
k
2
+ �k�

n
k
2

+CkKp(PH(P
n
H))(QH(~U

n
H)� ~U

n

h)(Ph(p
n
)�PH(P

n
H))k

2
T

+CkKp(PH(P
n
H))QH(~U

n
H)(Ph(P

n
h )�Ph(p

n
))k

2
T

+Ck
Kpp(�

n)

2
(Ph(p

n
)�PH(P

n
H))

2 ~U
n

hk
2
T;(83)

where � � K�=2.

We will consider the last three terms of (83). The �rst of these can be bounded as follows.

kKp(PH(P
n
H))(QH(~U

n
H)� ~U

n

h)(Ph(p
n
)�PH(P

n
H))k

2
T

� CkQH(~U
n
H)� ~U

n

hk
2
TMkPh(p

n
)�PH(P

n
H)k

2
1;(84)

where we can write,

kQH(~U
n
H)� ~U

n

hk
2
TM � kQH(~U

n
H)�QH(~u

n)k2TM + kQH(~u
n)� ~unk2TM

+k~un � ~U
n

hk
2
TM:

Since QH(~U
n
H) is a bilinear interpolant of terms that can be expressed in terms of nodal values of ~Un

H on

the coarse grid, it can be shown that,

kQH(~U
n
H)�QH(~u

n
)k2TM � Ck~Un

H � ~u
nk2TM;H ;

where k � kTM;H denotes the midpoint by trapezoidal norm on the coarse grid. We also have kQH(~u
n) �

~unk2TM � CH4 by Lemma 4.1. In order to bound the second term in (84) we write it as,

kPh(p
n
)�PH(P

n
H)k

2
1 � kPH(P

n
H)�PH(p

n
)k21 + kPH(p

n
)� pnk21

+kpn �Ph(p
n
)k21:

By the de�nition of PH , the equivalence of norms on the space WH , and Theorem 3.6, we have

kPH(P
n
H)�PH(p

n
)k21 �

C

Hd
kPn

H � pnk2M;H

� CH�d
(H4

+�t2);

where d is the space dimension. By Lemma 3.1, we have kPH(p
n)�pnk21 � CH4 and kPh(p

n)�pnk21 � Ch4.

Thus,

kKp(PH(P
n
H))(QH(~U

n
H)� ~U

n

h)(Ph(p
n
)�PH(P

n
H))k

2
T

� C(k~Un
H � ~u

nk2TM;H + k~un � ~U
n

hk
2
TM +H4

)(H4�d
+H�d

�t2 + h4):(85)

The second to last term in (83) can be bounded by,

kKp(PH(P
n
H))QH(~U

n
H)(Ph(P

n
h )�Ph(p

n
))k2T

� Ck~Un
Hk

2
1kPh(P

n
h )�Ph(p

n
)k2T

� C(H�dk~Un
H � ~u

nk2TM + k~unk21)(kPn
h � Pn

hk
2
M + kPn

h � pnk2M)

� C(H�dk~Un
H � ~u

nk2TM +C)(knk2 + h4):(86)
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The last term in (83) can be bounded by,

k
Kpp(�

n)

2
(Ph(p

n
)�PH(P

n
H))

2 ~U
n

hk
2
T

� CkPh(p
n
)�PH(P

n
H)k

2
1kPh(p

n
)�PH(P

n
H)k

2
T

� C(H4�d
+H�d

�t2 + h4)(h4 +H4
+ kpn � Pn

Hk
2
M;H)

� C(H4�d
+H�d

�t2 + h4)(h4 +H4
+�t2)

� C(H8�d
+ h4 +�t2 +H�dh4�t2 +H�d

�t4):(87)

Combining equation (83) with equations (85)-(87), taking the �k�nk2 term to the left side, multiplying

by 2�t and summing over n; n = 1; : : : ; N� where N� is the time step at which knk achieves its maximum

value gives,

kN
�

k2 � k0k+�t

N�X
n=1

K�k�
nk2TM

� �t

N�X
n=1

(k�nk2 + kdt�
nk2) + C�t

N�X
n=1

knk2

+C(H4�d
+H�d

�t2 + h4)�t

N�X
n=1

(k~Un
H � ~u

nk2TM;H + k~un � ~U
n

hk
2
TM +H4

)

+C(h4 + kN
�

k2)�t

N�X
n=1

H�dk~Un
H � ~u

nk2

+C(H8�d
+ h4 +�t2 +H�dh4�t2 +H�d

�t4):

Recalling the bound on �n, using Theorem 3.3 and recalling the initial conditions on P 0
h and P 0

h gives,

kN
�

k2 +�t

N�X
n=1

K�k�
nk2TM � C(H8�d + h4 +�t2 +H�dh4�t2 +H�d�t4)

+C�t

N�X
n=1

knk2 + ~CkN
�

k2(H4�d
+H�d

�t2):

We can choose H and �t such that H4�d+H�d�t2 � 1

2 ~C
, and the last term can be moved to the left-hand

side. Applying Gronwall's Lemma gives

kN
�

k2 +�t

N�X
n=1

K�k�
nk2TM � C(H8�d + h4 +�t2):

Applying Theorem 3.3 and the triangle inequality give the desired result.

5. Conclusions. We have presented and derived error estimates for a two level �nite di�erence scheme

for nonlinear parabolic equations. Through the use of the Ph;PH andQH operators, we have taken advantage

of superconvergent node points and have shown optimal order convergence in both H1 and L2 for the coarse

and �ne grids.

We remark that we have only considered the case of Neumann boundary conditons and a diagonal

tensor K. The expanded mixed method employed here was developed in order to handle a full symmetric

tensor for K. However, in the case of a full tensor, convergence may be lost on the boundary. In this case

we can show a coarse grid estimate of Hr+�t and a �ne grid estimate of hr+H2r�d=2+�t, where r = 2 if

K is diagonal and no Dirichlet conditions are enforced, r = 3=2 if K is diagonal or the grids are generated
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by a C2 map, and r = 1 otherwise for 2 dimensions and no convergence otherwise for 3 dimensions. These

estimates for a full tensor use the inverse estimate and may be improved through the derivation of explicit

L1 estimates. The loss of convergence due to the boundary is shown for the expanded mixed method in [1].

The estimates derived in this paper use the inverse estimate to bound L1 norms in terms of L2 norms.

As a result, our estimates may not be as sharp as possible. However, no better L1 estimates exist at this

time for the expanded mixed �nite element method.

The two level scheme described above could be extended by adding more levels and expanding about the

next coarser solution in the nonlinear term at each new level. This corresponds to adding more Newton-like

iterations with each iteration taking place on the next �ner grid. This possibility is under investigation.

We are currently implementing these two-level methods for equations of interest to ow in porous media.

Computational results for this work will be contained in later papers.
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